
International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004)  397  
Volume 1, Issue 4, December 2010 
 

A Binary Tree Based Approach to Discover 
Multiple Types of Resources in Grid Computing 

 

Leyli Mohammad khanli
1
, Ali Kazemi Niari 

2
  and Saeed Kargar

2
 

1
Assistance Professor, Cs Dept. University of Tabriz, Tabriz, Iran, 2 

MS student, Islamic 

Azad University-Tabriz Branch, Tabriz, Iran, 
{l-khanli@tabrizu.ac.ir, a.kazemi.n@gmail.com, saeed.kargar@gmail.com} 

 

Abstract: Today grid technology considered as a solution 

to solve complex problems. Grid included a large number of 

heterogeneous resources. So, a resource discovery 

mechanism should be able to discover these heterogeneous 

and dynamic resources in such environment. In many of the 

previous methods, there are not possible for discover 

multiple types of resources in a framework simultaneously. 

In this paper, we propose a binary tree based to discover 

multiple types of resources for grid environment. In this 

method, for discover multiple types of resources, we send a 

unique request. We compare our method with other methods 

using simulation. The experimental results show that our 

method for resource discovery has better performance. 

 
Keywords: Grid, Discover multiple types of resources, 

Tree structure. 
 

1. Introduction 
 

Grid presented as a way to solve special problems 
[1]. This environment included a large number of 
heterogeneous resources. Resource discovery; i.e. 
finding users request is the most important challenges 
in the grid [2]. 

A user request may be a combination of multiple 
types of resources. This challenge should be able to 
discover the resources in a distributed environment. 

A recent decentralizes method [3], uses tree 

structure for resource discovery in grid environment. 

Also, current method has presented a resource 

discovery method with one resource and different 

qualities. Therefore, discover more resources with 

different qualities needed to send separate and large 

number requests. In our method, we use tree structure, 

like [4]. In our proposed method, all tree nodes use the 

same table for identifying the resources available in it. 

The table contains all information related to the 

resources and their attributes. Our mechanism 

considers a combined package in every node in the 

grid and every node fills in its combined package 

using the table. 

In our method users can be found to several 
resources simultaneously. So, in instead of the 
previous methods, it would be possible for the user to 
access to multiple types of resources only by one 
request. 

This paper is organized as follows: Section 2 

includes related works. In section 3, we explain our 
proposed method. Section 4 involved experimental 
results and section 5 would be the conclusions. 

 

2. Related work 
 

Grid provided infrastructure for sharing resources with 
different types in environment. Resource discovery 
approaches is of special importance in grid 
environment. Many of the methods proposed for 
resource discovery in grid. 

One of the methods presented for resource 

discovery problem was the so called matchmaking one 

to solve the Condor problems [5]. Some researchers 
also used method matchmaking as a new method in 

their works [6]-[10]. In the current method, entities 
advertise their requirements and characters to the 

environment and a matchmaking service has to find a 

match between advertisement and entities. 

Some resource discovery methods use resource 

brokers to match the resources between resource 
consumers and resource providers to find the best 
resource. Resource brokers use some factors in 
decision making resource availability, 
software/hardware capabilities, network bandwidth 

and resource price [11],[12]. 

In [3], Ruay-Shiung Chang et al. proposed a 

resource discovery tree for grid which using bitmap. 

Any request by the user, should be changed into 

bitmap form. If a request reaches to one of the tree 

nodes, it will be compared with its local resource 

bitmap in which the data related to the local resources 

kept in (by AND operation). If the requested resource 

not found, (provided that current node is a leaf node), 

then the request will be sent to the parent node. 

Otherwise, the requests are compared with index 

bitmap in which the data related to children resources 

kept in. If the resource not found in children, too, the 

request will be sent to the parent node and until the 

requested resource be found, current process 

continues. 

In our previous work [4], we proposed another 

method in resource discovery which uses a weighted 

tree in grid environment. In the current method, users 

request directed to the target node through unique 

paths i.e. the requests are delivered to nodes in a 



International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004)  398  
Volume 1, Issue 4, December 2010 
 

determined format and the nodes send the request to 

their chosen children using the reserved information; 

but if no resource exists at the node and its children, it 

will be delivered to their parent node. 
 

Our algorithm has some differences with previous 

ones: 
 

In our method, every node has maximum of 2 
children which makes it easier for the parent nodes to 
keep and manage the children.  
 

For all nodes, we use the same table. It means that 
information available in tree would be accessible to all 
nodes only once, regarding the available resources in 
grid environment. Table information will not change 
and the nodes fill their related combined package 
using the table and the users only manipulate the small 
packages. 

 
3. Binary tree based approach to 

discover multiple types of resources 
 

3.1     Request resources in different types 
 

There are many heterogeneous resources in the grid 

which are geographically distributed. These resources 

have different types. The user may simultaneously 

need multiple types of resources. For example, 

machine (Dell PowerEdge 3250), processor type 

(Itanium 2, 1.5 GHz), operating system (vista), and so 

on. So, there should be a method in which the user 

may request resources in different types. Resources 

and their types should be known for the nodes. 

Managing the information of these heterogeneous 

resources, we propose a resource-table and some 

packages which discussed. First, we insert a list of 

resources with their types in the resource-table. 

Current table would be supplied to all nodes in the 

grid as a catalog. Figure 1 shows an example of 

resource-table. Any node has a "Local Combined 

Package" (LCP) which can extract the related code to 

its local resources and insert in the LCP. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. An example of resource-table 

 

For example, in Figure 2, we show a LCP with the 

following resources: machine (Dell PowerEdge 3250), 

processor type (UltraSparc 1.28 GHz), operating 

system (XP). The node places the related code for 

their local resources on the LCP, using resource- table 

of Figure 1. Besides the Local Combined Package, the 

node which has children needs another combined 

package for children which called "Children 

Combined Package" (CCP) to determine resources 

available in children (Figure 3). So, the CCP contains 

information of collected resources from children. 

When a node receive a request on resource 
discovery, it will be compared with LCP and then with 
CCP. The information of packages will be used to find 
the requested resources. 

 
 

 
Figure 2. An example of Local combined 

package. 
 
 
 
 

 
Figure 3. An example of children combined 

package. 
 

3.2     Initialization of our tree nodes 
 

In this subsection, initialization means collecting 
data of children nodes by parent nodes during building 
the tree. Any node can place the received data of 
children in the CCP and send complete information to 
the parent node. 

Figure 4 shows a typical grid environment with 

seven nodes which are connected with a tree structure. 

The tree is a binary one; i.e. any node can contain 

maximum of two children. The advantage of the tree 

would be easy management of children. 

Here, we discuss how data collected for Machine 

resource. First, information of leaf nodes (D, E) which 

would be 2 and 3 are sent to node B and for nodes F 

and G (i.e. 1, 3) it will be sent to node C. Node B 

which received number 2 from his left child (D), insert 

it in left position of Machine (CCP of node B), but 

number 3 which is received from right child (E) are 

insert in right position of Machine. Node C does the 

same process for its children nodes (F, G); i.e. for 

CCP of node C, left position=1 and right position=3. 

Nodes B and C should send their information to the 

parent node (A). We explain this process by more 

details. Left position of CCP=2, right position of 

CCP=3, LCP=2 which are in node B, are added to 

each other (2+3+27) and then send to the parent 



International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004)  399  
Volume 1, Issue 4, December 2010 
 

node (A). The same process performs for node C until 

number 7 insert in right position of Machine for node 

A (1+3+37). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4.  An example of typical grid 

environment. 

 
 

3.2     Resource discovery in typical grid 

environment 
 

In initialization, information related to the resources 

sent from children node to parent one. Therefore, all 

nodes obtain complete information of resources 

available in their children and descendants. Finally, 

the final form of tree is created. Now, the requested 

resources of users can discover in the current tree 

structure. There would be a frame which the users can 

record their requested resources and deliver it to a 

node. Our goal is that the user would be able to 

simultaneously request multiple types of resources. In 

Figure 5, the user requests the following resources: 

machine (HP ProLiant BL20p G2) processor type 

(POWER4+ 1.2 GHz), operating system (vista) as a 

request package. After forming the request package, 

the user should deliver it to one of the tree node. 

Figure 6 shows an example for resource discovery on 

a binary tree. 
 

 
 

Figure 5. An example of request package 

 

We suppose that in Figure 6, the request delivered 

to node G. Regarding the current algorithm, the 

request first compared with LCP of node G, but no 

match is found, so, the request delivered to parent 

node (C). Node C also compares it with its LCP and 

again no match is found. The request is compared with 

left positions of CCP (because the request comes from 

right child) and because no information of requested 

resources is found, then requested package forward to 

the parent node. Node A compared this request 

package with own LCP, then compared it with left 

positions of own CCP. 

Here, a probability match is found for the 
requested resource in left child of node A (node B). 
So, the request package is forward to node B. 
Operation of node B would be as follows: 

Node B first compared request package with its 

LCP and because this LCP not equals with request 

package then compared it with CCP. After this 

operation, node B found information about requested 

resources in its left child i.e. node D and right child 

i.e. node E and send request package to these nodes. 

The requested package that sent by node B which 

reaches node E, when compared with LCP of node E, 

can't discover the user's requested resources in this 

node, but the requested resources discovered in node 

D. Finally, send a success message to the node G and 

discovered resources would be reserve for user. 

 
 
 

 

 

 

 

 

 

 

 

 
Figure 6. An example for resource discovery. 

 
 

4    Experimental results 
 

4.1    Setup 
 

We performed the experiment at MATLAB 
environment and the resources and requests randomly 
distributed between nodes. Our experiment performed 
on a binary tree and compared with other approaches. 

It has to be noticed that the methods which have 
been compared with ours, are the ones proposed for 
the discovery of just one resource based on a tree 

structure in the grid environment. Because, we didn’t 
meet applied methods able to simultaneous discovery 
of multiple types of resources, so some methods 
recently presented for the discovery of one resource 
with different attributes on a tree will be compared 

with our method. In this process, we supposed that the 
current methods send the user’s request separately and 
then discover these resources for the user. 

For the other methods, we suppose that after the 



International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004)  400  
Volume 1, Issue 4, December 2010 
 

resources discovered and reserved for the user and 

before using them, the location of the discovered 

resources have to be compared and if all belong to one 

node, then they would be usable by the user. But in 

order to reduce the complexities available in 

simulation, we suppose for all simulations in other 

methods that all of the separated requests discover the 

resources from one node, but it is rarely possibility to 

occur. 

 
4.2    Simulation results 

 

We conducted the experiments with different 

number of requested resources; i.e. one of the 

experiments the user requests only one resource and in 
some other experiments, user simultaneously requests 

two resources and so on. In other methods, for 
example, if user demands 3 resources, user should 

send 3 separate requests, but, in our method, just one 

request will be sent. 

In the first experimental tests, the number of nodes 
which the requests send in tree method and FRDT 
with height 4, compared with our method. We 
supposed 300 users that everyone requested different 
number of resources (Figure 7 (a, b, c, d)). 

 

 
    FRDT  Our method 

 

b
y
  50000     

 

       

n
o

d
e

s
 

 40000     
 

re
q

u
e

s
ts
 

     
 

v
is

it
e

d
 

30000     
 

20000 
    

 

o
f     

 

      

N
u

m
b

e
r 

 10000     
 

      
 

  0     
 

  2 4 6 8 10 
 

     Number of resources 
 

   (a) # nodes= 85   
 

 
 

Tree height equals 4 FRDT Our method 
 

b
y
 

 60000     
 

       

n
o

d
e
s
 

 50000     
 

re
q

u
e

s
ts
 

40000     
 

v
is

it
e

d
 

    
 

30000     
 

o
f       

 20000      

N
u

m
b

e
r      

 

 10000     
 

      
 

  0     
 

  2 4 6 8 10 
 

     Number of resources 
 

   (b) # nodes=156   
 

 

 

 
 

Tree height equals 4 FRDT Our method 
 

 
 
 

Tree height equals 4 FRDT Our method 
   

 

N
u
m

b
e

r 
o
f 

V
id

e
o

s
  

 100000     
 

       

 80000     
 

re
q

u
e

s
ts
 

     
 

60000     
 

     
 

40000      

     

 
20000     

 

      
 

  0     
 

  2 4 6 8 10 
 

     

Number of 
resources 

 

 
(d) #nodes=400 

 
Figure 7. The number of visited nodes for 300 

requests. 
 

In the second experimental tests, the average 
number of nodes in which the requests are sent, shows 
for methods flooding-based algorithm, MMO 
[13],[14] and our method. The results presented in 
Figure 8. In this test 300 users requesting one 
resource. 
 

 
  1 2 0 0 0 0    

 

vi
si

te
d
   Floo ding-based   

 

 
1 0 0 0 0 0 appro ach   

 

 

M M O    

    
 

     
 

o
f  8 0 0 0 0 

o ur method   
 

    
 

n
u

m
b

er
 

n
o
d

es
 

6 0 0 0 0    
 

    
 

 
4 0 0 0 0    

 

A
ve

ra
g
e      

 
2 0 0 0 0    

 

     
 

  0    
 

  8 5 1 5 6 2 5 9 4 0 0 
 

     Number of nodes 
 

 
Figure 8.  Average number of nodes that equests 

are forwarded using different approach. 
 

In the last experimental tests, number of visited 

nodes during resource discovery and updating are 

show in tree and FRDT methods and also in our 
method. In the first environment, we supposed 100 

b
y
 

 70000     
 

       

n
o

d
e

s
 

 60000     
 

re
q

u
e

s
ts
 50000     

 

v
is

it
e

d
      

40000     
 

30000 
    

 

o
f     

 

      

N
u
m

b
e

r 

 20000     
 

 10000     
 

       

  0     
 

  2 4 6 8 10 
 

     Number of resources 
 

   (c) # nodes=259  
 



International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004)  401  
Volume 1, Issue 4, December 2010 
 

users that everyone requested five resources (Figure 9) 

and in the second environment we supposed 100 users 
that everyone requested ten resources, each time 

(Figure 10). As observed in Figure 9 and Figure 10, if 

the number of user increases and every user request 
more resources, each time, our method would be more 

efficient comparing other methods. 
 
 

in
 

 25000    
 

vi
si

te
d
 

u
p
d
a

t

e 20000    
 

      

th
a

t 
an d     

 

n
o
d

es
 

d
is

co
ve

r

y 

15000    
 

    
 

o
f 

10000    
 

n
em

b
er

     

     

re
so

u
rc

e 

5000    
 

T
o

ta
l 

    
 

 
0    

 

     
 

  85 156 259 400 
  

Number of  

nodes 
 

  

Our method 
 

 

 

FRDT 
 

Tree method  

     
 

          

 
Figure 9. Total number of visited nodes by requests 

for 100 users each user requests five 
resources. 

 

in
 

 40000    
 

vi
si

te
d
 

u
p

d
a

t

e 

35000    
 

30000    
 

th
at
 

a
n

d
    

 

25000    
 

n
o

d
es
 

d
is

co
ve

ry
 

   
 

20000    
 

o
f 

15000    
 

n
em

b
er
     

re
so

u
rc

e 

10000    
 

5000    
 

T
o

ta
l    

 

     

 0    
 

  85 156 259 400 
  

Number of 
nodes  

  

Our method  

 

 

FRDT  

Tree method  

     
 

          

 

 
Figure 10. Total number of visited nodes by requests 

for 100 users each user requests ten 
resources. 

 
5    Conclusions and Future Work 

In this paper, we proposed a resource discovery 

mechanism which is on the basis of binary tree. So, 
every node has maximum of 2 children which makes it 
easier for the parent nodes to keep and manage the 
children. In our method, the users can send multiple 

requests in the form of a unique request. 

In the future, if we can find a method that by using 
it, we discovered several resources on a free tree mode 
(not merely binary), we can improve the resource 

discovery mechanism significantly. 

 
References 
 
[1] Ian Foster, Carl Kesselman, The Grid 2: Blueprint 

for a New Computing Infrastructure, Morgan 
Kaufmann Publishers Inc., San Francisco, CA, 
2003.  

[2] YiLi, G., FangPeng, D., Wei, L., ZhiWei, 
X.:VEGA Infrastructure for Resource Discovery in 
Grids. J. Comput. Sci. & Technol, pp.413-422 
(2003)  

[3] Shiung Chang, R., Shuo Hu, M.: A resource 
discovery tree using bitmap for grids. Future 
Generation Computer Systems (2009)  

 
[4] L.M. Khanli, S. Kargar, FRDT: Footprint Resource 

Discovery Tree for grids, Future Gener. Comput. 
Syst. 27 (2011) 148–156.  

[5] R. Raman, M. Livny, M. Solomon, Matchmaking: 
distributed resource management for high 
throughput computing, hpdc, in: Seventh IEEE 
International Symposium on High Performance 
Distributed Computing (HPDC-7’98), 1998, p. 140.  

 
[6] K.I. Karaoglanoglou, H.D. Karatza, Resource 

Discovery in a dynamical grid based on Re-routing 
Tables, Simulation Modelling Practice and Theory 
16 (2008) 704–720.  

 
[7] Rajesh. Raman, Matchmaking Frameworks for 

Distributed Resource Management, University of 
Wisconsin-Maddison, 2001.  

 
[8] Ye Zhu, Junzhou Luo, Teng Ma, Dividing Grid 

Service Discovery into 2-stage matchmaking, ISPA 
2004, LNCS, vol. 3358, 2004, pp. 372–381.  

 
[9] S .Tangpongprasit, T .Katagiri, H .Honda, T .Yuba, 

A time-to-live based reservation algorithm on fully 
decentralized resource discovery in grid computing, 
Parallel Computing 31 )6( )2005(529-543.  

 
[10] Muthucumaru Maheswaran, Klaus Krauter, A 

parameter-based approach to Resource Discovery 
in Grid Computing Systems, GRID, 2000.  

 
[11] Bradley, A., Curran, K., Parr, G., 2006. 

Discovering resource in computational GRID 
environments. The Journal of Supercomputing, 35, 
27–49.  

 
[12] D. Lacks, T. Kocak, Developing reusable 

simulation core code for networking: The grid 
resource discovery example, The Journal of 
Systems and Software 82 (2009) 89-100.  

 
[13] M. Marzolla, M. Mordacchini, S. Orlando, 

Resource discovery in a dynamic environment, in: 
Proceedings of the 16th International Workshop on 
Database and Expert Systems Applications, 
DEXA'05, September 3_7, 2005, pp. 356_360.  

 
[14] M. Marzolla, M. Mordacchini, S. Orlando, Peer-to-

peer systems for discovering resources in a 
dynamic grid, Parallel Computing 33 (4_5) (2007) 
339_358.  

 
 
 


